

RED TTFLUOR™ HDFs

RED FLUORESCENT HUMAN DERMAL FIBROBLASTS

Product Name:	RED TTFLUOR HDFs
Catalog Number:	P20204
Cell Type:	Primary Human Dermal Fibroblasts
Fluorescent Protein:	turboFP602 (Evrogen)
Format:	> 5 x 10 ⁵ cells in Cryopreserved vials
Storage:	Liquid Nitrogen

RED TTFLUOR HDFs are Red fluorescent human primary fibroblasts, which has been developed through lentiviral particles transfection with turboFP602 expression vector into the cell genome. Cells are expressing the red fluorescent protein gene sequences as free cytoplasmatic protein.

About primary HDFs

Fibroblasts are mesenchymal cells derived from the embryonic mesoderm. They have been extensively used for a wide range of cellular and molecular studies. This is mainly because they are one of easiest types of cells to grow in culture, and their durability makes them amenable to a wide variety of manipulations ranging from studies employing gene transfection to microinjection. During wound healing, dermal fibroblasts switch from a migratory, repopulating phenotype to a contractile, matrix-reassembling phenotype.

Recommended Medium

 Fibroblast Medium
(Reference: P60108)

About TurboFP602

TurboFP602 protein is a red shifted variant of the red fluorescent protein TurboRFP from sea anemone *Entacmaea quadricolor* [Merzlyak et al., 2007].

TurboFP602 possesses true-red fluorescence (with excitation/emission maxima at 574/602 nm, respectively), optimal for detection via most popular filter sets, and is easily distinguished from background signals. TurboFP602 exhibits fast maturation and high pH stability.

Use Restriction

This product contains a proprietary nucleic acid coding for a proprietary fluorescent protein intended to be used for research purposes only. No rights are conveyed to modify or clone the gene encoding fluorescent protein contained in this product, or to use the gene or protein other than for non-commercial research, including use for validation or screening compounds. For information on commercial licensing, contact Licensing Department, Evrogen JSC, email: license@evrogen.com.

INSTRUCTIONS FOR CULTURING CELLS

IMPORTANT: Cryopreserved cells are very delicate. Thaw the vial in a 37 °C waterbath and return them to culture as quickly as possible with minimal handling!

Set up culture after receiving the order:

1. Prepare a poly-L-lysine coated flask (2 µg/cm², T-75 flask is recommended). Add 10 ml of sterile water to a T-75 flask and then add 150 µl of poly-L-lysine stock solution (1 mg/ml, Innoprot Ref. PLL). Leave the flask in incubator overnight (minimum one hour at 37°C incubator).
2. Prepare complete medium: decontaminate the external surfaces of medium and medium supplements with 70% ethanol and transfer them to sterile field. Aseptically open each supplement tube and add them to the basal medium with a pipette. Rinse each tube with medium to recover the entire volume.
3. Rinse the poly-L-lysine coated flask with sterile water twice and add 20 ml of complete medium to the flask. Leave the flask in the hood and go to thaw the cells.
4. Place the vial in a 37°C waterbath, hold and rotate the vial gently until the contents are completely thawed. Remove the vial from the waterbath immediately, wipe it dry, rinse the vial with 70% ethanol and transfer it to a sterile field. Remove the cap, being careful not to touch the interior threads with fingers. Using 1 ml eppendorf pipette gently resuspend the contents of the vial.
5. Dispense the contents of the vial into the equilibrated, poly-L-lysine coated culture vessels. A seeding density higher than 5,000 cells/cm² is recommended.

Note: Dilution and centrifugation of cells after thawing are not recommended since these actions are more harmful to the cells than the effect of DMSO residue in the culture.

It is also important that fibroblasts are plated in poly-L-lysine coated culture vessels that promote cell attachment.

6. Replace the cap or cover, and gently rock the vessel to distribute the cells evenly. Loosen cap if necessary to permit gas exchange.
7. Return the culture vessels to the incubator.
8. For best result, do not disturb the culture for at least 16 hours after the culture has been initiated. Change the growth medium the next day to remove the residual DMSO and unattached cells, then every other day thereafter.

Maintenance of Culture:

1. Change the medium to fresh supplemented medium the next morning after establishing a culture from cryopreserved cells.
2. Change the medium every three days thereafter, until the culture is approximately 70% confluent.
3. Once the culture reaches 70% confluence, change medium every other day until the culture is approximately 90% confluent.

Subculture:

1. Subculture the cells when they are over 90% confluent.
2. Prepare poly-L-lysine coated flasks (2 µg/cm²) one day before subculture.
3. Warm medium, trypsin/EDTA solution (T/E, cat. no. 0103), trypsin neutralization solution (TNS, cat. no. 0113), and DPBS to room temperature. We do not recommend warming the reagents and medium at 37°C waterbath prior to use.
4. Rinse the cells with DPBS.
5. Add 8 ml of DPBS first and then 2 ml of trypsin/EDTA solution into flask (in the case of T-75 flask); gently rock the flask to make sure cells are covered by trypsin/EDTA solution; incubate the flask at 37°C incubator for 1 to 3 minutes or until cells are completely rounded up (monitored with inverted microscope). During incubation, prepare a 50 ml conical centrifuge tube with 5 ml of fetal bovine serum; transfer trypsin/EDTA solution from the flask to the 50 ml centrifuge tube (a few percent of cells may detached); continue incubate the flask at 37°C for 1 minutes (no solution in the flask at this moment); at the end of trypsinisation, one hand hold one side of flask and the other hand gently tap the other side of the flask to detach cells from attachment; check the flask under inverted microscope to make sure all cells are detached, add 5 ml of trypsin neutralization solution to the flask and transfer detached cells to the 50 ml centrifuge tube; add another 5 ml of TNS to harvest the residue cells and transfer it to the 50 ml centrifuge tube. Examine the flask under inverted microscope to make sure the cell harvesting is successful by looking at the number of cells left behind. There should be less than 5%.

Note: DPBS, trypsin/EDTA solution & trypsin neutralization solution are included in the "Primary Cells Detach Kit provided by Innoprot (Cat. Nº P60305).

6. Centrifuge the 50 ml centrifuge tube (harvested cell suspension) at 1000 rpm (Beckman Coulter Allegra 6R centrifuge or similar) for 5 min; re-suspend cells in growth medium.
7. Count cells and plate cells in a new, poly-L-lysine coated flask with cell density as recommended.

Cautions: Handling human derived products is potentially biohazardous. Although each cell strain testes negative for HIV, HBV and HCV DNA, diagnostic tests are not necessarily 100% accurate, therefore, proper precautions must be taken to avoid inadvertent exposure. Always wear gloves and safety glasses when working these materials. Never mouth pipette. We recommend following the universal procedures for handling products of human origin as the minimum precaution against contamination [1].

- [1]. Grizzle, W. E., and Polt, S. S. (1988) Guidelines to avoid personal contamination by infective agents in research laboratories that use human tissues. *J Tissue Culture Methods*. 11(4).